Multivariate Calculus and Geometry

Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dineen, Seán (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:3rd ed. 2014.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02820nam a22004335i 4500
001 978-1-4471-6419-7
003 DE-He213
005 20140918122943.0
007 cr nn 008mamaa
008 140918s2014 xxk| s |||| 0|eng d
020 |a 9781447164197  |9 978-1-4471-6419-7 
024 7 |a 10.1007/978-1-4471-6419-7  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Dineen, Seán.  |e author. 
245 1 0 |a Multivariate Calculus and Geometry  |h [electronic resource] /  |c by Seán Dineen. 
250 |a 3rd ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 257 p. 103 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Introduction to Differentiable Functions -- Level Sets and Tangent Spaces -- Lagrange Multipliers -- Maxima and Minima on Open Sets -- Curves in Rn -- Line Integrals -- The Frenet–Serret Equations -- Geometry of Curves in R3 -- Double Integration -- Parametrized Surfaces in R3 -- Surface Area -- Surface Integrals -- Stokes’ Theorem -- Triple Integrals -- The Divergence Theorem -- Geometry of Surfaces in R3 -- Gaussian Curvature -- Geodesic Curvature. 
520 |a Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447164180 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6419-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)