Multivariate Calculus and Geometry
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London : Imprint: Springer,
2014.
|
Έκδοση: | 3rd ed. 2014. |
Σειρά: | Springer Undergraduate Mathematics Series,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction to Differentiable Functions
- Level Sets and Tangent Spaces
- Lagrange Multipliers
- Maxima and Minima on Open Sets
- Curves in Rn
- Line Integrals
- The Frenet–Serret Equations
- Geometry of Curves in R3
- Double Integration
- Parametrized Surfaces in R3
- Surface Area
- Surface Integrals
- Stokes’ Theorem
- Triple Integrals
- The Divergence Theorem
- Geometry of Surfaces in R3
- Gaussian Curvature
- Geodesic Curvature.