Potential Theory

Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse squar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Helms, Lester L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03166nam a22004935i 4500
001 978-1-4471-6422-7
003 DE-He213
005 20151103125026.0
007 cr nn 008mamaa
008 140410s2014 xxk| s |||| 0|eng d
020 |a 9781447164227  |9 978-1-4471-6422-7 
024 7 |a 10.1007/978-1-4471-6422-7  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Helms, Lester L.  |e author. 
245 1 0 |a Potential Theory  |h [electronic resource] /  |c by Lester L. Helms. 
250 |a 2nd ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 485 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preliminaries -- Laplace’s Equation -- The Dirichlet Problem -- Green Functions -- Negligible Sets -- Dirichlet Problem for Unbounded Regions -- Energy -- Interpolation and Monotonicity -- Newtonian Potential -- Elliptic Operators -- Apriori Bounds -- Oblique Derivative Problem -- Application to Diffusion Processes. 
520 |a Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics, and engineering. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Potential Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447164210 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6422-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)