Hypergeometric Summation An Algorithmic Approach to Summation and Special Function Identities /

Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Koepf, Wolfram (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03141nam a22005415i 4500
001 978-1-4471-6464-7
003 DE-He213
005 20151121051540.0
007 cr nn 008mamaa
008 140610s2014 xxk| s |||| 0|eng d
020 |a 9781447164647  |9 978-1-4471-6464-7 
024 7 |a 10.1007/978-1-4471-6464-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 518.1  |2 23 
100 1 |a Koepf, Wolfram.  |e author. 
245 1 0 |a Hypergeometric Summation  |h [electronic resource] :  |b An Algorithmic Approach to Summation and Special Function Identities /  |c by Wolfram Koepf. 
250 |a 2nd ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 279 p. 5 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Introduction -- The Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper’s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger’s Algorithm -- Extensions of the Algorithms -- Petkovˇsek’s and Van Hoeij’s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating Functions. 
520 |a Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 0 |a Algorithms. 
650 0 |a Computer software. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algorithms. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Special Functions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447164630 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6464-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)