Hypergeometric Summation An Algorithmic Approach to Summation and Special Function Identities /
Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations,...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London : Imprint: Springer,
2014.
|
Έκδοση: | 2nd ed. 2014. |
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- The Gamma Function
- Hypergeometric Identities
- Hypergeometric Database
- Holonomic Recurrence Equations
- Gosper’s Algorithm
- The Wilf-Zeilberger Method
- Zeilberger’s Algorithm
- Extensions of the Algorithms
- Petkovˇsek’s and Van Hoeij’s Algorithm
- Differential Equations for Sums
- Hyperexponential Antiderivatives
- Holonomic Equations for Integrals
- Rodrigues Formulas and Generating Functions.