Asymptotic Chaos Expansions in Finance Theory and Practice /

Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nicolay, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Σειρά:Springer Finance,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03768nam a22005295i 4500
001 978-1-4471-6506-4
003 DE-He213
005 20151030011326.0
007 cr nn 008mamaa
008 141125s2014 xxk| s |||| 0|eng d
020 |a 9781447165064  |9 978-1-4471-6506-4 
024 7 |a 10.1007/978-1-4471-6506-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Nicolay, David.  |e author. 
245 1 0 |a Asymptotic Chaos Expansions in Finance  |h [electronic resource] :  |b Theory and Practice /  |c by David Nicolay. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 491 p. 34 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Finance,  |x 1616-0533 
505 0 |a Introduction -- Volatility dynamics for a single underlying: foundations -- Volatility dynamics for a single underlying: advanced methods -- Practical applications and testing -- Volatility dynamics in a term structure -- Implied Dynamics in the SV-HJM framework -- Implied Dynamics in the SV-LMM framework -- Conclusion. 
520 |a Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Economics, Mathematical. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447165057 
830 0 |a Springer Finance,  |x 1616-0533 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6506-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)