Probabilistic Graphical Models Principles and Applications /

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applicat...

Full description

Bibliographic Details
Main Author: Sucar, Luis Enrique (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2015.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04138nam a22005415i 4500
001 978-1-4471-6699-3
003 DE-He213
005 20151103125124.0
007 cr nn 008mamaa
008 150619s2015 xxk| s |||| 0|eng d
020 |a 9781447166993  |9 978-1-4471-6699-3 
024 7 |a 10.1007/978-1-4471-6699-3  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 005.55  |2 23 
100 1 |a Sucar, Luis Enrique.  |e author. 
245 1 0 |a Probabilistic Graphical Models  |h [electronic resource] :  |b Principles and Applications /  |c by Luis Enrique Sucar. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a XXIV, 253 p. 117 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Part I: Fundamentals -- Introduction -- Probability Theory -- Graph Theory -- Part II: Probabilistic Models -- Bayesian Classifiers -- Hidden Markov Models -- Markov Random Fields -- Bayesian Networks: Representation and Inference -- Bayesian Networks: Learning -- Dynamic and Temporal Bayesian Networks -- Part III: Decision Models -- Decision Graphs -- Markov Decision Processes -- Part IV: Relational and Causal Models -- Relational Probabilistic Graphical Models -- Graphical Causal Models. 
520 |a This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Describes the practical application of the different techniques Examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models Provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter Suggests possible course outlines for instructors in the preface This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Probabilities. 
650 0 |a Electrical engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Electrical Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447166986 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6699-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)