Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field. With extensive introductions, formal and mathematical developments and real case studies, this book provid...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lerman, Israël César (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • On Some Facets of the Partition Set of a Finite Set
  • Two Methods of Non-hierarchical Clustering
  • Structure and Mathematical Representation of Data
  • Ordinal and Metrical Analysis of the Resemblance Notion
  • Comparing Attributes by a Probabilistic and Statistical Association I
  • Comparing Attributes by a Probabilistic and Statistical Association II
  • Comparing Objects or Categories Described by Attributes
  • The Notion of “Natural” Class, Tools for its Interpretation. The Classifiability Concept
  • Quality Measures in Clustering
  • Building a Classification Tree
  • Applying the LLA Method to Real Data
  • Conclusion and Thoughts for Future Works.