Ergodic Theory and Dynamical Systems

This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Coudène, Yves (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2016.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Part I Ergodic Theory
  • The Mean Ergodic Theorem
  • The Pointwise Ergodic Theorem
  • Mixing
  • The Hopf Argument
  • Part II Dynamical Systems
  • Topological Dynamics
  • Nonwandering
  • Conjugation
  • Linearization
  • A Strange Attractor
  • Part III Entropy Theory
  • Entropy
  • Entropy and Information Theory
  • Computing Entropy
  • Part IV Ergodic Decomposition
  • Lebesgue Spaces and Isomorphisms
  • Ergodic Decomposition
  • Measurable Partitions and -Algebras
  • Part V Appendices
  • Weak Convergence
  • Conditional Expectation
  • Topology and Measures
  • References.