Principles of Data Mining

This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clus...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bramer, Max (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2016.
Έκδοση:3rd ed. 2016.
Σειρά:Undergraduate Topics in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04381nam a22005295i 4500
001 978-1-4471-7307-6
003 DE-He213
005 20161111021210.0
007 cr nn 008mamaa
008 161109s2016 xxk| s |||| 0|eng d
020 |a 9781447173076  |9 978-1-4471-7307-6 
024 7 |a 10.1007/978-1-4471-7307-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
082 0 4 |a 025.04  |2 23 
100 1 |a Bramer, Max.  |e author. 
245 1 0 |a Principles of Data Mining  |h [electronic resource] /  |c by Max Bramer. 
250 |a 3rd ed. 2016. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 526 p. 123 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a Introduction to Data Mining -- Data for Data Mining -- Introduction to Classification: Naïve Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Dealing with Large Volumes of Data -- Ensemble Classification -- Comparing Classifiers -- Associate Rule Mining I -- Associate Rule Mining II -- Associate Rule Mining III -- Clustering -- Mining -- Classifying Streaming Data -- Classifying Streaming Data II: Time-dependent Data -- Appendix A – Essential Mathematics -- Appendix B – Datasets -- Appendix C – Sources of Further Information -- Appendix D – Glossary and Notation -- Appendix E – Solutions to Self-assessment Exercises -- Index. 
520 |a This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Programming Techniques. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447173069 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-7307-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)