Neural Networks and Statistical Learning

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercise...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Du, Ke-Lin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Swamy, M. N. S. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04687nam a2200565 4500
001 978-1-4471-7452-3
003 DE-He213
005 20191022061500.0
007 cr nn 008mamaa
008 190912s2019 xxk| s |||| 0|eng d
020 |a 9781447174523  |9 978-1-4471-7452-3 
024 7 |a 10.1007/978-1-4471-7452-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.87 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Du, Ke-Lin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks and Statistical Learning  |h [electronic resource] /  |c by Ke-Lin Du, M. N. S. Swamy. 
250 |a 2nd ed. 2019. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2019. 
300 |a XXX, 988 p. 184 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fundamentals of Machine Learning -- Perceptrons -- Multilayer perceptrons: architecture and error backpropagation -- Multilayer perceptrons: other learing techniques -- Hopfield networks, simulated annealing and chaotic neural networks -- Associative memory networks -- Clustering I: Basic clustering models and algorithms -- Clustering II: topics in clustering -- Radial basis function networks -- Recurrent neural networks -- Principal component analysis -- Nonnegative matrix factorization and compressed sensing -- Independent component analysis -- Discriminant analysis -- Support vector machines -- Other kernel methods -- Reinforcement learning -- Probabilistic and Bayesian networks -- Combining multiple learners: data fusion and emsemble learning -- Introduction of fuzzy sets and logic -- Neurofuzzy systems -- Neural circuits -- Pattern recognition for biometrics and bioinformatics -- Data mining. 
520 |a This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models; • clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 1 4 |a Mathematical Models of Cognitive Processes and Neural Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/M13100 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
700 1 |a Swamy, M. N. S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447174516 
776 0 8 |i Printed edition:  |z 9781447174530 
776 0 8 |i Printed edition:  |z 9781447174547 
856 4 0 |u https://doi.org/10.1007/978-1-4471-7452-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)