An Introduction to Complex Analysis

This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner.   Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Agarwal, Ravi P. (Συγγραφέας), Perera, Kanishka (Συγγραφέας), Pinelas, Sandra (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2011.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03888nam a22004815i 4500
001 978-1-4614-0195-7
003 DE-He213
005 20151204171728.0
007 cr nn 008mamaa
008 110629s2011 xxu| s |||| 0|eng d
020 |a 9781461401957  |9 978-1-4614-0195-7 
024 7 |a 10.1007/978-1-4614-0195-7  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Agarwal, Ravi P.  |e author. 
245 1 3 |a An Introduction to Complex Analysis  |h [electronic resource] /  |c by Ravi P. Agarwal, Kanishka Perera, Sandra Pinelas. 
250 |a 1. 
264 1 |a Boston, MA :  |b Springer US,  |c 2011. 
300 |a XIV, 331 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface.-Complex Numbers.-Complex Numbers II -- Complex Numbers III.-Set Theory in the Complex Plane.-Complex Functions.-Analytic Functions I.-Analytic Functions II.-Elementary Functions I -- Elementary Functions II -- Mappings by Functions -- Mappings by Functions II -- Curves, Contours, and Simply Connected Domains -- Complex Integration -- Independence of Path -- Cauchy–Goursat Theorem -- Deformation Theorem -- Cauchy’s Integral Formula -- Cauchy’s Integral Formula for Derivatives -- Fundamental Theorem of Algebra -- Maximum Modulus Principle -- Sequences and Series of Numbers -- Sequences and Series of Functions -- Power Series -- Taylor’s Series -- Laurent’s Series -- Zeros of Analytic Functions -- Analytic Continuation -- Symmetry and Reflection -- Singularities and Poles I -- Singularities and Poles II -- Cauchy’s Residue Theorem -- Evaluation of Real Integrals by Contour Integration I -- Evaluation of Real Integrals by Contour Integration II -- Indented Contour Integrals -- Contour Integrals Involving Multi–valued Functions -- Summation of Series. Argument Principle and Rouch´e and Hurwitz Theorems -- Behavior of Analytic Mappings -- Conformal Mappings -- Harmonic Functions -- The Schwarz–Christoffel Transformation -- Infinite Products -- Weierstrass’s Factorization Theorem -- Mittag–Leffler’s Theorem -- Periodic Functions -- The Riemann Zeta Function -- Bieberbach’s Conjecture -- The Riemann Surface -- Julia and Mandelbrot Sets -- History of Complex Numbers -- References for Further Reading -- Index. 
520 |a This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner.   Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples to drive the presentation -Includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section -covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics -Provides a concise history of complex numbers     An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Analysis. 
700 1 |a Perera, Kanishka.  |e author. 
700 1 |a Pinelas, Sandra.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461401940 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-0195-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)