Introduction to Stochastic Programming

The aim of stochastic programming is to find optimal decisions in problems  which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Birge, John R. (Συγγραφέας), Louveaux, François (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04002nam a22005415i 4500
001 978-1-4614-0237-4
003 DE-He213
005 20151204190747.0
007 cr nn 008mamaa
008 110614s2011 xxu| s |||| 0|eng d
020 |a 9781461402374  |9 978-1-4614-0237-4 
024 7 |a 10.1007/978-1-4614-0237-4  |2 doi 
040 |d GrThAP 
050 4 |a QA402-402.37 
050 4 |a T57.6-57.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJM  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a BUS042000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Birge, John R.  |e author. 
245 1 0 |a Introduction to Stochastic Programming  |h [electronic resource] /  |c by John R. Birge, François Louveaux. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XXV, 485 p. 44 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
505 0 |a Introduction and Examples -- Uncertainty and Modeling Issues -- Basic Properties and Theory -- The Value of Information and the Stochastic Solution -- Two-Stage Recourse Problems -- Multistage Stochastic Programs -- Stochastic Integer Programs -- Evaluating and Approximating Expectations -- Monte Carlo Methods -- Multistage Approximations -- Sample Distribution Functions -- References. 
520 |a The aim of stochastic programming is to find optimal decisions in problems  which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods. The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make 'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)     . 
650 0 |a Mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Optimization. 
700 1 |a Louveaux, François.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461402367 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-0237-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)