Synthetic Datasets for Statistical Disclosure Control Theory and Implementation /

The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with re...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Drechsler, Jörg (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Έκδοση:1.
Σειρά:Lecture Notes in Statistics, 201
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Background on Multiply Imputed Synthetic Datasets
  • Background on Multiple Imputation
  • The IAB Establishment Panel
  • Multiple Imputation for Nonresponse
  • Fully Synthetic Datasets
  • Partially Synthetic Datasets
  • Multiple Imputation for Nonresponse and Statistical Disclosure Control
  • A Two-Stage Imputation Procedure to Balance the Risk-Utility Trade-Off
  • Chances and Obstacles for Multiply Imputed Synthetic Datasets.