A Polynomial Approach to Linear Algebra

A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becom...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fuhrmann, Paul A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03117nam a22004935i 4500
001 978-1-4614-0338-8
003 DE-He213
005 20151125021325.0
007 cr nn 008mamaa
008 111121s2012 xxu| s |||| 0|eng d
020 |a 9781461403388  |9 978-1-4614-0338-8 
024 7 |a 10.1007/978-1-4614-0338-8  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Fuhrmann, Paul A.  |e author. 
245 1 2 |a A Polynomial Approach to Linear Algebra  |h [electronic resource] /  |c by Paul A. Fuhrmann. 
264 1 |a New York, NY :  |b Springer New York,  |c 2012. 
300 |a XVI, 411 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preliminaries -- Linear Spaces -- Determinants -- Linear Transformations -- The Shift Operator -- Structure Theory of Linear Transformations -- Inner Product Spaces -- Quadratic Forms -- Stability -- Elements of System Theory -- Hankel Norm Approximation. 
520 |a A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. This new edition has been updated throughout, in particular new sections  have been added on rational interpolation, interpolation using H^{\nfty} functions, and tensor products of models. Review from first edition: “…the approach pursued by the author is of unconventional beauty and the material covered by the book is unique.” (Mathematical Reviews, A. Böttcher). 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461403371 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-0338-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)