Representation Theory of Finite Groups An Introductory Approach /

Representation Theory of Finite Groups presents group representation theory at a level accessible to advanced undergraduate students and beginning graduate students. The required background is maintained to the level of linear algebra, group theory, and very basic ring theory and avoids prerequisite...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Steinberg, Benjamin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03361nam a22004455i 4500
001 978-1-4614-0776-8
003 DE-He213
005 20131212052403.0
007 cr nn 008mamaa
008 111021s2012 xxu| s |||| 0|eng d
020 |a 9781461407768  |9 978-1-4614-0776-8 
024 7 |a 10.1007/978-1-4614-0776-8  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Steinberg, Benjamin.  |e author. 
245 1 0 |a Representation Theory of Finite Groups  |h [electronic resource] :  |b An Introductory Approach /  |c by Benjamin Steinberg. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XIII, 157 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
520 |a Representation Theory of Finite Groups presents group representation theory at a level accessible to advanced undergraduate students and beginning graduate students. The required background is maintained to the level of linear algebra, group theory, and very basic ring theory and avoids prerequisites in analysis and topology by dealing exclusively with finite groups. Module theory and Wedderburn theory, as well as tensor products, are deliberately omitted. Instead, an approach based on discrete Fourier Analysis is taken, thereby demanding less background from the reader. The main topics covered in this text include character theory, the group algebra and Fourier analysis, Burnside's pq-theorem and the dimension theorem, permutation representations, induced representations and Mackey's theorem, and the representation theory of the symmetric group. For those students who have an elementary knowledge of probability and statistics, a chapter on random walks on finite groups serves as an illustration to link finite stochastics and representation theory. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject and the author provides motivation and a gentle style throughout the text. A number of exercises add greater dimension to the understanding of the subject and some aspects of a combinatorial nature are clearly shown in diagrams. This text will engage a broad readership due to the significance of representation theory in diverse branches of mathematics, engineering, and physics, to name a few. Its primary intended use is as a one semester textbook for a third or fourth year undergraduate course or an introductory graduate course on group representation theory. The content can also be of use as a reference to researchers in all areas of mathematics, statistics, and several mathematical sciences. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461407751 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-0776-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)