An Invitation to Morse Theory

This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory. The second part consists of applicat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nicolaescu, Liviu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03171nam a22004935i 4500
001 978-1-4614-1105-5
003 DE-He213
005 20151125021122.0
007 cr nn 008mamaa
008 111201s2011 xxu| s |||| 0|eng d
020 |a 9781461411055  |9 978-1-4614-1105-5 
024 7 |a 10.1007/978-1-4614-1105-5  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Nicolaescu, Liviu.  |e author. 
245 1 3 |a An Invitation to Morse Theory  |h [electronic resource] /  |c by Liviu Nicolaescu. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XVI, 353 p. 47 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- Notations and Conventions -- 1 Morse Functions -- 2 The Topology of Morse Functions -- 3 Applications -- 4 Morse-Smale Flows and Whitney Stratifications -- 5 Basics of Complex Morse Theory -- 6 Exercises and Solutions -- References -- Index. 
520 |a This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory. The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory.   This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds.   Some features of the second edition include added applications, such as Morse theory and the curvature of  knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461411048 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-1105-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)