The Kepler Conjecture The Hales-Ferguson Proof /

The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lagarias, Jeffrey C. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04745nam a22004815i 4500
001 978-1-4614-1129-1
003 DE-He213
005 20151125152025.0
007 cr nn 008mamaa
008 111107s2011 xxu| s |||| 0|eng d
020 |a 9781461411291  |9 978-1-4614-1129-1 
024 7 |a 10.1007/978-1-4614-1129-1  |2 doi 
040 |d GrThAP 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
245 1 4 |a The Kepler Conjecture  |h [electronic resource] :  |b The Hales-Ferguson Proof /  |c edited by Jeffrey C. Lagarias. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 456 p. 93 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Part I, Introduction and Survey -- 1 The Kepler Conjecture and Its Proof, by J. C. Lagarias -- 2 Bounds for Local Density of Sphere Packings and the Kepler Conjecture, by J. C. Lagarias -- Part II, Proof of the Kepler Conjecture -- Guest Editor's Foreword -- 3 Historical Overview of the Kepler Conjecture, by T. C. Hales -- 4 A Formulation of the Kepler Conjecture, by T. C. Hales and S. P. Ferguson -- 5 Sphere Packings III. Extremal Cases, by T. C. Hales -- 6 Sphere Packings IV. Detailed Bounds, by T. C. Hales -- 7 Sphere Packings V. Pentahedral Prisms, by S. P. Ferguson -- 8 Sphere Packings VI. Tame Graphs and Linear Programs, by T. C. Hales -- Part III, A Revision to the Proof of the Kepler Conjecture -- 9 A Revision of the Proof of the Kepler Conjecture, by T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller -- Part IV, Initial Papers of the Hales Program -- 10 Sphere Packings I, by T. C. Hales -- 11 Sphere Packings II, by T. C. Hales -- Index of Symbols -- Index of Subjects. 
520 |a The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers. This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture. The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work. Thomas C. Hales, Mellon Professor of Mathematics at the University of Pittsburgh, began his efforts to solve the Kepler conjecture before 1992. He is a pioneer in the use of computer proof techniques, and he continues work on a formal proof of the Kepler conjecture as the aim of the Flyspeck Project (F, P and K standing for Formal Proof of Kepler). Samuel P. Ferguson completed his doctorate in 1997 under the direction of Hales at the University of Michigan. In 1995, Ferguson began to work with Hales and made significant contributions to the proof of the Kepler conjecture. His doctoral work established one crucial case of the proof, which appeared as a singly authored paper in the detailed proof. Jeffrey C. Lagarias, Professor of Mathematics at the University of Michigan, Ann Arbor, was a co-guest editor, with Gábor Fejes-Tóth, of the special issue of Discrete & Computational Geometry that originally published the proof. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Lagarias, Jeffrey C.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461411284 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-1129-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)