|
|
|
|
LEADER |
02744nam a22004815i 4500 |
001 |
978-1-4614-1231-1 |
003 |
DE-He213 |
005 |
20151125193015.0 |
007 |
cr nn 008mamaa |
008 |
111207s2012 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781461412311
|9 978-1-4614-1231-1
|
024 |
7 |
|
|a 10.1007/978-1-4614-1231-1
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA174-183
|
072 |
|
7 |
|a PBG
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
082 |
0 |
4 |
|a 512.2
|2 23
|
100 |
1 |
|
|a Sengupta, Ambar N.
|e author.
|
245 |
1 |
0 |
|a Representing Finite Groups
|h [electronic resource] :
|b A Semisimple Introduction /
|c by Ambar N. Sengupta.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York :
|b Imprint: Springer,
|c 2012.
|
300 |
|
|
|a XVI, 372 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
520 |
|
|
|a This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Applied mathematics.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Quantum physics.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Group Theory and Generalizations.
|
650 |
2 |
4 |
|a Quantum Physics.
|
650 |
2 |
4 |
|a Applications of Mathematics.
|
650 |
2 |
4 |
|a Theoretical, Mathematical and Computational Physics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781461412304
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-1-4614-1231-1
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|