Regression Methods in Biostatistics Linear, Logistic, Survival, and Repeated Measures Models /

This new edition provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for l...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vittinghoff, Eric (Συγγραφέας), Glidden, David V. (Συγγραφέας), Shiboski, Stephen C. (Συγγραφέας), McCulloch, Charles E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Έκδοση:2nd ed. 2012.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05267nam a22005295i 4500
001 978-1-4614-1353-0
003 DE-He213
005 20151204161510.0
007 cr nn 008mamaa
008 120305s2012 xxu| s |||| 0|eng d
020 |a 9781461413530  |9 978-1-4614-1353-0 
024 7 |a 10.1007/978-1-4614-1353-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Vittinghoff, Eric.  |e author. 
245 1 0 |a Regression Methods in Biostatistics  |h [electronic resource] :  |b Linear, Logistic, Survival, and Repeated Measures Models /  |c by Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, Charles E. McCulloch. 
250 |a 2nd ed. 2012. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a XX, 512 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 1431-8776 
505 0 |a Introduction -- Exploratory and Descriptive Methods -- Basic Statistical Methods -- Linear Regression -- Logistic Regression -- Survival Analysis -- Repeated Measures Analysis -- Generalized Linear Models -- Strengthening Casual Inference -- Predictor Selection -- Complex Surveys -- Summary. 
520 |a This new edition provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way. The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided. For many students and researchers learning to use these methods, this one book may be all they need to conduct and interpret multipredictor regression analyses. In the second edition, the authors have substantially expanded the core chapters, including new coverage of exact, ordinal, and multinomial logistic models, discrete time and competing risks survival models, within and between effects in longitudinal models, zero-inflated Poisson and negative binomial models, cross-validation for prediction model selection, directed acyclic graphs, and sample size, power and minimum detectable effect calculations; Stata code is also updated. In addition, there are new chapters on methods for strengthening causal inference, including propensity scores, marginal structural models, and instrumental variables, and on methods for handling missing data, using maximum likelihood, multiple imputation, inverse weighting, and pattern mixture models. From the reviews of the first edition: "This book provides a unified introduction to the regression methods listed in the title...The methods are well illustrated by data drawn from medical studies...A real strength of this book is the careful discussion of issues common to all of the multipredictor methods covered." Journal of Biopharmaceutical Statistics, 2005 "This book is not just for biostatisticians. It is, in fact, a very good, and relatively nonmathematical, overview of multipredictor regression models. Although the examples are biologically oriented, they are generally easy to understand and follow...I heartily recommend the book" Technometrics, February 2006 "Overall, the text provides an overview of regression methods that is particularly strong in its breadth of coverage and emphasis on insight in place of mathematical detail. As intended, this well-unified approach should appeal to students who learn conceptually and verbally." Journal of the American Statistical Association, March 2006. 
650 0 |a Statistics. 
650 0 |a Public health. 
650 0 |a Epidemiology. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Epidemiology. 
650 2 4 |a Public Health. 
700 1 |a Glidden, David V.  |e author. 
700 1 |a Shiboski, Stephen C.  |e author. 
700 1 |a McCulloch, Charles E.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461413523 
830 0 |a Statistics for Biology and Health,  |x 1431-8776 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-1353-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)