Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation

This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction  solutions in the neighborhood of singular points in two-dimensional domains, and  singular edges and vertices in three-dimensional domains. These are presented in an  en...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Yosibash, Zohar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2012.
Σειρά:Interdisciplinary Applied Mathematics, 37
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04300nam a22004935i 4500
001 978-1-4614-1508-4
003 DE-He213
005 20151103123043.0
007 cr nn 008mamaa
008 111130s2012 xxu| s |||| 0|eng d
020 |a 9781461415084  |9 978-1-4614-1508-4 
024 7 |a 10.1007/978-1-4614-1508-4  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Yosibash, Zohar.  |e author. 
245 1 0 |a Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation  |h [electronic resource] /  |c by Zohar Yosibash. 
264 1 |a New York, NY :  |b Springer New York,  |c 2012. 
300 |a XXII, 462 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 37 
520 |a This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction  solutions in the neighborhood of singular points in two-dimensional domains, and  singular edges and vertices in three-dimensional domains. These are presented in an  engineering terminology for practical usage. The author treats the mathematical   formulations from an engineering viewpoint and presents high-order finite-element  methods for the computation of singular solutions in isotropic and anisotropic materials,  and multi-material interfaces.  The proper interpretation of the results in engineering practice  is advocated, so that the computed data can be correlated to experimental observations.   The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle materials on a daily basis.  Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein.   Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along  singular edges are presented and demonstrated by several example  problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with  some remarks on open questions. This well illustrated book will appeal to both applied  mathematicians and engineers working in the field of fracture mechanics and  singularities. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461415077 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 37 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-1508-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)