Algebraic Geometry over the Complex Numbers

This textbook is a strong addition to existing introductory literature on algebraic geometry. The author’s treatment combines the study of algebraic geometry with differential and complex geometry and unifies these subjects using sheaf-theoretic ideas. It is also an ideal text for showing students t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Arapura, Donu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03365nam a22004815i 4500
001 978-1-4614-1809-2
003 DE-He213
005 20151125021528.0
007 cr nn 008mamaa
008 120214s2012 xxu| s |||| 0|eng d
020 |a 9781461418092  |9 978-1-4614-1809-2 
024 7 |a 10.1007/978-1-4614-1809-2  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Arapura, Donu.  |e author. 
245 1 0 |a Algebraic Geometry over the Complex Numbers  |h [electronic resource] /  |c by Donu Arapura. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a XII, 329 p. 17 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- 1. Plane Curves -- 2. Manifolds and Varieties via Sheaves -- 3. More Sheaf Theory -- 4. Sheaf Cohomology -- 5. de Rham Cohomoloy of Manifolds -- 6. Riemann Surfaces -- 7. Simplicial Methods -- 8. The Hodge Theorem for Riemann Manifolds -- 9. Toward Hodge Theory for Complex Manifolds -- 10. Kahler Manifolds -- 11. A Little Algebraic Surface Theory -- 12. Hodge Structures and Homological Methods -- 13. Topology of Families -- 14. The Hard Lefschez Theorem -- 15. Coherent Sheaves -- 16. Computation of Coherent Sheaves -- 17. Computation of some Hodge numbers -- 18. Deformation Invariance of Hodge Numbers -- 19. Analogies and Conjectures.- References -- Index. 
520 |a This textbook is a strong addition to existing introductory literature on algebraic geometry. The author’s treatment combines the study of algebraic geometry with differential and complex geometry and unifies these subjects using sheaf-theoretic ideas. It is also an ideal text for showing students the connections between algebraic geometry, complex geometry, and topology, and brings the reader close to the forefront of research in Hodge theory and related fields. Unique features of this textbook: - Contains a rapid introduction to complex algebraic geometry - Includes background material on topology, manifold theory and sheaf theory - Analytic and algebraic approaches are developed somewhat in parallel The presentation is easy going, elementary, and well illustrated with examples. “Algebraic Geometry over the Complex Numbers” is intended for graduate level courses in algebraic geometry and related fields. It can be used as a main text for a second semester graduate course in algebraic geometry with emphasis on sheaf theoretical methods or a more advanced graduate course on algebraic geometry and Hodge Theory. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461418085 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-1809-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)