Algebraic Geometry over the Complex Numbers
This textbook is a strong addition to existing introductory literature on algebraic geometry. The author’s treatment combines the study of algebraic geometry with differential and complex geometry and unifies these subjects using sheaf-theoretic ideas. It is also an ideal text for showing students t...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2012.
|
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- 1. Plane Curves
- 2. Manifolds and Varieties via Sheaves
- 3. More Sheaf Theory
- 4. Sheaf Cohomology
- 5. de Rham Cohomoloy of Manifolds
- 6. Riemann Surfaces
- 7. Simplicial Methods
- 8. The Hodge Theorem for Riemann Manifolds
- 9. Toward Hodge Theory for Complex Manifolds
- 10. Kahler Manifolds
- 11. A Little Algebraic Surface Theory
- 12. Hodge Structures and Homological Methods
- 13. Topology of Families
- 14. The Hard Lefschez Theorem
- 15. Coherent Sheaves
- 16. Computation of Coherent Sheaves
- 17. Computation of some Hodge numbers
- 18. Deformation Invariance of Hodge Numbers
- 19. Analogies and Conjectures.- References
- Index.