Algebraic Geometry over the Complex Numbers

This textbook is a strong addition to existing introductory literature on algebraic geometry. The author’s treatment combines the study of algebraic geometry with differential and complex geometry and unifies these subjects using sheaf-theoretic ideas. It is also an ideal text for showing students t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Arapura, Donu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • 1. Plane Curves
  • 2. Manifolds and Varieties via Sheaves
  • 3. More Sheaf Theory
  • 4. Sheaf Cohomology
  • 5. de Rham Cohomoloy of Manifolds
  • 6. Riemann Surfaces
  • 7. Simplicial Methods
  • 8. The Hodge Theorem for Riemann Manifolds
  • 9. Toward Hodge Theory for Complex Manifolds
  • 10. Kahler Manifolds
  • 11. A Little Algebraic Surface Theory
  • 12. Hodge Structures and Homological Methods
  • 13. Topology of Families
  • 14. The Hard Lefschez Theorem
  • 15. Coherent Sheaves
  • 16. Computation of Coherent Sheaves
  • 17. Computation of some Hodge numbers
  • 18. Deformation Invariance of Hodge Numbers
  • 19. Analogies and Conjectures.- References
  • Index.