Fractal-Based Methods in Analysis
The idea of modeling the behavior of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional...
Κύριοι συγγραφείς: | Kunze, Herb (Συγγραφέας), La Torre, Davide (Συγγραφέας), Mendivil, Franklin (Συγγραφέας), Vrscay, Edward R. (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2012.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Construction of Global Lyapunov Functions Using Radial Basis Functions
ανά: Giesl, Peter
Έκδοση: (2007) -
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
ανά: Han, Maoan, κ.ά.
Έκδοση: (2012) -
Nonlinear Oscillations of Hamiltonian PDEs
ανά: Berti, Massimiliano
Έκδοση: (2007) -
Operator-Related Function Theory and Time-Frequency Analysis The Abel Symposium 2012 /
Έκδοση: (2015) -
Three-Dimensional Flows
ανά: Araújo, Vítor, κ.ά.
Έκδοση: (2010)