Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lapidus, Michel L. (Συγγραφέας), van Frankenhuijsen, Machiel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Έκδοση:2nd ed. 2013.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Overview
  • Introduction
  • 1. Complex Dimensions of Ordinary Fractal Strings
  • 2. Complex Dimensions of Self-Similar Fractal Strings
  • 3. Complex Dimensions of Nonlattice Self-Similar Strings
  • 4. Generalized Fractal Strings Viewed as Measures
  • 5. Explicit Formulas for Generalized Fractal Strings
  • 6. The Geometry and the Spectrum of Fractal Strings
  • 7. Periodic Orbits of Self-Similar Flows
  • 8. Fractal Tube Formulas
  • 9. Riemann Hypothesis and Inverse Spectral Problems
  • 10. Generalized Cantor Strings and their Oscillations
  • 11. Critical Zero of Zeta Functions
  • 12 Fractality and Complex Dimensions
  • 13. Recent Results and Perspectives
  • Appendix A. Zeta Functions in Number Theory
  • Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics
  • Appendix C. An Application of Nevanlinna Theory
  • Bibliography
  • Author Index
  • Subject Index
  • Index of Symbols
  • Conventions
  • Acknowledgements.