Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researc...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Έκδοση: | 2nd ed. 2013. |
Σειρά: | Springer Monographs in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Overview
- Introduction
- 1. Complex Dimensions of Ordinary Fractal Strings
- 2. Complex Dimensions of Self-Similar Fractal Strings
- 3. Complex Dimensions of Nonlattice Self-Similar Strings
- 4. Generalized Fractal Strings Viewed as Measures
- 5. Explicit Formulas for Generalized Fractal Strings
- 6. The Geometry and the Spectrum of Fractal Strings
- 7. Periodic Orbits of Self-Similar Flows
- 8. Fractal Tube Formulas
- 9. Riemann Hypothesis and Inverse Spectral Problems
- 10. Generalized Cantor Strings and their Oscillations
- 11. Critical Zero of Zeta Functions
- 12 Fractality and Complex Dimensions
- 13. Recent Results and Perspectives
- Appendix A. Zeta Functions in Number Theory
- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics
- Appendix C. An Application of Nevanlinna Theory
- Bibliography
- Author Index
- Subject Index
- Index of Symbols
- Conventions
- Acknowledgements.