Network Inference in Molecular Biology A Hands-on Framework /

Inferring gene regulatory networks is a difficult problem to solve due to the relative scarcity of data compared to the potential size of the networks. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for ever...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lingeman, Jesse M. (Συγγραφέας), Shasha, Dennis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02747nam a22004935i 4500
001 978-1-4614-3113-8
003 DE-He213
005 20151204180638.0
007 cr nn 008mamaa
008 120523s2012 xxu| s |||| 0|eng d
020 |a 9781461431138  |9 978-1-4614-3113-8 
024 7 |a 10.1007/978-1-4614-3113-8  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSA  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Lingeman, Jesse M.  |e author. 
245 1 0 |a Network Inference in Molecular Biology  |h [electronic resource] :  |b A Hands-on Framework /  |c by Jesse M. Lingeman, Dennis Shasha. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 100 p. 58 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a The Gene Network Inference Problem -- Experimental Inputs -- Running Examples -- Overall Workflow of Inference -- Sample Pipelines -- Roll Your Own Pipeline -- Appendix. 
520 |a Inferring gene regulatory networks is a difficult problem to solve due to the relative scarcity of data compared to the potential size of the networks. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for every data set. Network Inference in Molecular Biology examines the current techniques used by researchers, and provides key insights into which algorithms best fit a collection of data. Through a series of in-depth examples, the book also outlines how to mix-and-match algorithms, in order to create one tailored to a specific data situation. Network Inference in Molecular Biology is intended for advanced-level students and researchers as a reference guide. Practitioners and professionals working in a related field will also find this book valuable. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Bioinformatics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Shasha, Dennis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461431121 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3113-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)