Rainbow Connections of Graphs

Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow Connections of Graphs covers this new and emerging topic in graph theory and brings together a majority of the res...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Xueliang (Συγγραφέας), Sun, Yuefang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03275nam a22004935i 4500
001 978-1-4614-3119-0
003 DE-He213
005 20151124021435.0
007 cr nn 008mamaa
008 120223s2012 xxu| s |||| 0|eng d
020 |a 9781461431190  |9 978-1-4614-3119-0 
024 7 |a 10.1007/978-1-4614-3119-0  |2 doi 
040 |d GrThAP 
050 4 |a QA166-166.247 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT013000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
100 1 |a Li, Xueliang.  |e author. 
245 1 0 |a Rainbow Connections of Graphs  |h [electronic resource] /  |c by Xueliang Li, Yuefang Sun. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a VIII, 103 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Introduction (Motivation and definitions, Terminology and notations) -- 2. (Strong) Rainbow connection number(Basic results, Upper bounds for rainbow connection number, For some graph classes, For dense and sparse graphs, For graph operations, An upper bound for strong rainbow connection number) -- 3. Rainbow k-connectivity --  4. k-rainbow index -- 5. Rainbow vertex-connection number -- 6. Algorithms and computational complexity -- References. 
520 |a Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow Connections of Graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006. The authors begin with an introduction to rainbow connectedness, rainbow coloring, and  rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number. Rainbow Connections of Graphs appeals to researchers and graduate students in the field of graph theory. Conjectures, open problems and questions are given throughout the text with the  hope for motivating young graph theorists and graduate students to do further study in this subject. 
650 0 |a Mathematics. 
650 0 |a Data structures (Computer science). 
650 0 |a Number theory. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Graph Theory. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Number Theory. 
700 1 |a Sun, Yuefang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461431183 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3119-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)