Mining Text Data

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Aggarwal, Charu C. (Επιμελητής έκδοσης), Zhai, ChengXiang (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03584nam a22005175i 4500
001 978-1-4614-3223-4
003 DE-He213
005 20151204150610.0
007 cr nn 008mamaa
008 120202s2012 xxu| s |||| 0|eng d
020 |a 9781461432234  |9 978-1-4614-3223-4 
024 7 |a 10.1007/978-1-4614-3223-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Mining Text Data  |h [electronic resource] /  |c edited by Charu C. Aggarwal, ChengXiang Zhai. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a XII, 524 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a An Introduction to Text Mining -- Information Extraction from Text -- A Survey of Text Summarization Techniques -- A Survey of Text Clustering Algorithms -- Dimensionality Reduction and Topic Modeling -- A Survey of Text Classification Algorithms -- Transfer Learning for Text Mining -- Probabilistic Models for Text Mining -- Mining Text Streams -- Translingual Mining from Text Data -- Text Mining in Multimedia -- Text Analytics in Social Media -- A Survey of Opinion Mining and Sentiment Analysis -- Biomedical Text Mining: A Survey of Recent Progress -- Index. 
520 |a Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Multimedia information systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Multimedia Information Systems. 
700 1 |a Aggarwal, Charu C.  |e editor. 
700 1 |a Zhai, ChengXiang.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461432227 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3223-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)