Ordinary Differential Equations

Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for co...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Adkins, William A. (Συγγραφέας), Davidson, Mark G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03450nam a22004455i 4500
001 978-1-4614-3618-8
003 DE-He213
005 20151218041628.0
007 cr nn 008mamaa
008 120630s2012 xxu| s |||| 0|eng d
020 |a 9781461436188  |9 978-1-4614-3618-8 
024 7 |a 10.1007/978-1-4614-3618-8  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Adkins, William A.  |e author. 
245 1 0 |a Ordinary Differential Equations  |h [electronic resource] /  |c by William A. Adkins, Mark G. Davidson. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XIII, 799 p. 121 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- 1 First Order Differential Equations -- 2 The Laplace Transform -- 3 Second Order Constant Coefficient Linear Differential Equations -- 4 Linear Constant Coefficient Differential Equations -- 5 Second Order Linear Differential Equations -- 6 Discontinuous Functions and the Laplace Transform -- 7 Power Series Methods -- 8 Matrices -- 9 Linear Systems of Differential Equations -- A Appendix -- B Selected Answers -- C Tables -- Symbol Index -- Index. 
520 |a Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
700 1 |a Davidson, Mark G.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461436171 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3618-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)