Markov Bases in Algebraic Statistics

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aoki, Satoshi (Συγγραφέας), Hara, Hisayuki (Συγγραφέας), Takemura, Akimichi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:Springer Series in Statistics, 199
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03941nam a22005175i 4500
001 978-1-4614-3719-2
003 DE-He213
005 20151125142151.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461437192  |9 978-1-4614-3719-2 
024 7 |a 10.1007/978-1-4614-3719-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Aoki, Satoshi.  |e author. 
245 1 0 |a Markov Bases in Algebraic Statistics  |h [electronic resource] /  |c by Satoshi Aoki, Hisayuki Hara, Akimichi Takemura. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 ;  |v 199 
505 0 |a Exact tests for contingency tables and discrete exponential families -- Markov chain Monte Carlo methods over discrete sample space -- Toric ideals and their Gröbner bases -- Definition of Markov bases and other bases -- Structure of minimal Markov bases -- Method of distance reduction -- Symmetry of Markov bases -- Decomposable models of contingency tables -- Markov basis for no-three-factor interaction models and some other hierarchical models -- Two-way tables with structural zeros and fixed subtable sums -- Regular factorial designs with discrete response variables -- Group-wise selection models -- The set of moves connecting specific fibers -- Disclosure limitation problem and Markov basis -- Gröbner basis techniques for design of experiments -- Running Markov chain without Markov bases -- References -- Index. 
520 |a Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels. This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field. Satoshi Aoki obtained his doctoral degree from University of Tokyo in 2004 and is currently an associate professor in Graduate school of Science and Engineering, Kagoshima University. Hisayuki Hara obtained his doctoral degree from University of Tokyo in 1999 and is currently an associate professor in Faculty of Economics, Niigata University. Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in Graduate School of Information Science and Technology, University of Tokyo. 
650 0 |a Statistics. 
650 0 |a Algebra. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Hara, Hisayuki.  |e author. 
700 1 |a Takemura, Akimichi.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461437185 
830 0 |a Springer Series in Statistics,  |x 0172-7397 ;  |v 199 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3719-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)