Geometric Optimal Control Theory, Methods and Examples /

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schättler, Heinz (Συγγραφέας), Ledzewicz, Urszula (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:Interdisciplinary Applied Mathematics, 38
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04543nam a22006015i 4500
001 978-1-4614-3834-2
003 DE-He213
005 20151204182319.0
007 cr nn 008mamaa
008 120626s2012 xxu| s |||| 0|eng d
020 |a 9781461438342  |9 978-1-4614-3834-2 
024 7 |a 10.1007/978-1-4614-3834-2  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Schättler, Heinz.  |e author. 
245 1 0 |a Geometric Optimal Control  |h [electronic resource] :  |b Theory, Methods and Examples /  |c by Heinz Schättler, Urszula Ledzewicz. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XX, 640 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 38 
505 0 |a The Calculus of Variations: A Historical Perspective -- The Pontryagin Maximum Principle: From Necessary Conditions to the Construction of an Optimal Solution -- Reachable Sets of Linear Time-Invariant Systems: From Convex Sets to the Bang-Bang Theorem -- The High-Order Maximum Principle: From Approximations of Reachable Sets to High-Order Necessary Conditions for Optimality -- The Method of Characteristics: A Geometric Approach to Sufficient Conditions for a Local Minimum -- Synthesis of Optimal Controlled Trajectories: FromLocal to Global Solutions -- Control-Affine Systems in Low Dimensions: From Small-Time Reachable Sets to Time-Optimal Syntheses -- References -- Index. 
520 |a This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including  the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of  Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Differential geometry. 
650 0 |a Calculus of variations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Control engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Control. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Ledzewicz, Urszula.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461438335 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 38 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3834-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)