Approximation Methods for Polynomial Optimization Models, Algorithms, and Applications /

Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some import...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Zhening (Συγγραφέας), He, Simai (Συγγραφέας), Zhang, Shuzhong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:SpringerBriefs in Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02859nam a22005415i 4500
001 978-1-4614-3984-4
003 DE-He213
005 20151030211420.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461439844  |9 978-1-4614-3984-4 
024 7 |a 10.1007/978-1-4614-3984-4  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Li, Zhening.  |e author. 
245 1 0 |a Approximation Methods for Polynomial Optimization  |h [electronic resource] :  |b Models, Algorithms, and Applications /  |c by Zhening Li, Simai He, Shuzhong Zhang. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 124 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 |a 1.  Introduction.-2. Polynomial over the Euclidean Ball -- 3. Extensions of the Constraint Sets -- 4. Applications -- 5. Concluding Remarks. 
520 |a Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications.   This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Algorithms. 
650 0 |a Mathematical models. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Algorithms. 
650 2 4 |a Applications of Mathematics. 
700 1 |a He, Simai.  |e author. 
700 1 |a Zhang, Shuzhong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461439837 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3984-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)