Ordering Block Designs Gray Codes, Universal Cycles and Configuration Orderings /

The study of combinatorial block designs is a vibrant area of combinatorial mathematics with connections to finite geometries, graph theory, coding theory and statistics. The practice of ordering combinatorial objects can trace its roots to bell ringing which originated in 17th century England, but...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dewar, Megan (Συγγραφέας), Stevens, Brett (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03621nam a22004815i 4500
001 978-1-4614-4325-4
003 DE-He213
005 20151030071118.0
007 cr nn 008mamaa
008 120828s2012 xxu| s |||| 0|eng d
020 |a 9781461443254  |9 978-1-4614-4325-4 
024 7 |a 10.1007/978-1-4614-4325-4  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Dewar, Megan.  |e author. 
245 1 0 |a Ordering Block Designs  |h [electronic resource] :  |b Gray Codes, Universal Cycles and Configuration Orderings /  |c by Megan Dewar, Brett Stevens. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 208 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
505 0 |a Abstract -- Acknowledgements -- Introduction -- Background -- Ordering the Blocks of Designs -- Gray Codes and Universal Cycles for Designs -- New Results in Configuration Ordering -- Conclusions and Future Work -- Bibliography -- Index. 
520 |a The study of combinatorial block designs is a vibrant area of combinatorial mathematics with connections to finite geometries, graph theory, coding theory and statistics. The practice of ordering combinatorial objects can trace its roots to bell ringing which originated in 17th century England, but only emerged as a significant modern research area with the work of F. Gray and N. de Bruijn.  These two fascinating areas of mathematics are brought together for the first time in this book. It presents new terminology and concepts which unify existing and recent results from a wide variety of sources. In order to provide a complete introduction and survey, the book begins with background material on combinatorial block designs and combinatorial orderings, including Gray codes — the most common and well-studied combinatorial ordering concept — and universal cycles. The central chapter discusses how ordering concepts can be applied to block designs, with definitions from existing (configuration orderings) and new (Gray codes and universal cycles for designs) research. Two chapters are devoted to a survey of results in the field, including illustrative proofs and examples. The book concludes with a discussion of connections to a broad range of applications in computer science, engineering and statistics. This book will appeal to both graduate students and researchers. Each chapter contains worked examples and proofs, complete reference lists, exercises and a list of conjectures and open problems. Practitioners will also find the book appealing for its accessible, self-contained introduction to the mathematics behind the applications. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Discrete Mathematics in Computer Science. 
700 1 |a Stevens, Brett.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461443247 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-4325-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)