Introduction to Piecewise Differentiable Equations

This brief provides an elementary introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations.  In the first chapter, two sample problems are used to motivate the study of this theory. The presentation is then developed using two basic tools for the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Scholtes, Stefan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Σειρά:SpringerBriefs in Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02585nam a22004815i 4500
001 978-1-4614-4340-7
003 DE-He213
005 20151116135220.0
007 cr nn 008mamaa
008 120731s2012 xxu| s |||| 0|eng d
020 |a 9781461443407  |9 978-1-4614-4340-7 
024 7 |a 10.1007/978-1-4614-4340-7  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Scholtes, Stefan.  |e author. 
245 1 0 |a Introduction to Piecewise Differentiable Equations  |h [electronic resource] /  |c by Stefan Scholtes. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a X, 133 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
520 |a This brief provides an elementary introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations.  In the first chapter, two sample problems are used to motivate the study of this theory. The presentation is then developed using two basic tools for the analysis of piecewise differentiable functions: the Bouligand derivative as the nonsmooth analogue of the classical derivative concept and the theory of piecewise affine functions as the combinatorial tool for the study of this approximation function. In the end, the results are combined to develop inverse and implicit function theorems for piecewise differentiable equations.  This Introduction to Piecewise Differentiable Equations will serve graduate students and researchers alike. The reader is assumed to be familiar with basic mathematical analysis and to have some familiarity with polyhedral theory. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461443391 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-4340-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)