Calculus Without Derivatives

Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization proble...

Full description

Bibliographic Details
Main Author: Penot, Jean-Paul (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Graduate Texts in Mathematics, 266
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03120nam a22005775i 4500
001 978-1-4614-4538-8
003 DE-He213
005 20170124141604.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 |a 9781461445388  |9 978-1-4614-4538-8 
024 7 |a 10.1007/978-1-4614-4538-8  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Penot, Jean-Paul.  |e author. 
245 1 0 |a Calculus Without Derivatives  |h [electronic resource] /  |c by Jean-Paul Penot. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XX, 524 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 266 
505 0 |a Preface -- 1 Metric and Topological Tools -- 2 Elements of Differential Calculus -- 3 Elements of Convex Analysis -- 4 Elementary and Viscosity Subdifferentials -- 5 Circa-Subdifferentials, Clarke Subdifferentials -- 6 Limiting Subdifferentials -- 7 Graded Subdifferentials, Ioffe Subdifferentials -- References -- Index . 
520 |a Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Functions of real variables. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a System theory. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461445371 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 266 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-4538-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)