Attractors for infinite-dimensional non-autonomous dynamical systems
This book treats the theory of pullback attractors for non-autonomous dynamical systems. While the emphasis is on infinite-dimensional systems, the results are also applied to a variety of finite-dimensional examples. The purpose of the book is to provide a summary of the current theory, starting...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Σειρά: | Applied Mathematical Sciences,
182 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- The pullback attractor
- Existence results for pullback attractors
- Continuity of attractors
- Finite-dimensional attractors
- Gradient semigroups and their dynamical properties
- Semilinear Differential Equations
- Exponential dichotomies
- Hyperbolic solutions and their stable and unstable manifolds
- A non-autonomous competitive Lotka-Volterra system
- Delay differential equations.-The Navier–Stokes equations with non-autonomous forcing.- Applications to parabolic problems
- A non-autonomous Chafee–Infante equation
- Perturbation of diffusion and continuity of attractors with rate
- A non-autonomous damped wave equation
- References
- Index.-.