Attractors for infinite-dimensional non-autonomous dynamical systems

This book treats the theory of pullback attractors for non-autonomous dynamical systems. While the emphasis is on infinite-dimensional systems, the results are also applied to a variety of finite-dimensional examples.   The purpose of the book is to provide a summary of the current theory, starting...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Carvalho, Alexandre N. (Συγγραφέας), Langa, José A. (Συγγραφέας), Robinson, James C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Applied Mathematical Sciences, 182
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • The pullback attractor
  • Existence results for pullback attractors
  • Continuity of attractors
  • Finite-dimensional attractors
  • Gradient semigroups and their dynamical properties
  • Semilinear Differential Equations
  • Exponential dichotomies
  • Hyperbolic solutions and their stable and unstable manifolds
  • A non-autonomous competitive Lotka-Volterra system
  • Delay differential equations.-The Navier–Stokes equations with non-autonomous forcing.-  Applications to parabolic problems
  • A non-autonomous Chafee–Infante equation
  • Perturbation of diffusion and continuity of attractors with rate
  • A non-autonomous damped wave equation
  • References
  • Index.-.