Privacy-Preserving Machine Learning for Speech Processing
This thesis discusses the privacy issues in speech-based applications, including biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identificat...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Σειρά: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Thesis Overview
- Speech Processing Background
- Privacy Background
- Overview of Speaker Verification with Privacy
- Privacy-Preserving Speaker Verification Using Gaussian Mixture Models
- Privacy-Preserving Speaker Verification as String Comparison
- Overview of Speaker Indentification with Privacy
- Privacy-Preserving Speaker Identification Using Gausian Mixture Models
- Privacy-Preserving Speaker Identification as String Comparison
- Overview of Speech Recognition with Privacy
- Privacy-Preserving Isolated-Word Recognition
- Thesis Conclusion
- Future Work
- Differentially Private Gaussian Mixture Models.