Privacy-Preserving Machine Learning for Speech Processing

This thesis discusses the privacy issues in speech-based applications, including biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identificat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pathak, Manas A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Thesis Overview
  • Speech Processing Background
  • Privacy Background
  • Overview of Speaker Verification with Privacy
  • Privacy-Preserving Speaker Verification Using Gaussian Mixture Models
  • Privacy-Preserving Speaker Verification as String Comparison
  • Overview of Speaker Indentification with Privacy
  • Privacy-Preserving Speaker Identification Using Gausian Mixture Models
  • Privacy-Preserving Speaker Identification as String Comparison
  • Overview of Speech Recognition with Privacy
  • Privacy-Preserving Isolated-Word Recognition
  • Thesis Conclusion
  • Future Work
  • Differentially Private Gaussian Mixture Models.