Linear-Quadratic Controls in Risk-Averse Decision Making Performance-Measure Statistics and Control Decision Optimization /

Linear-Quadratic Controls in Risk-Averse Decision Making   cuts across control engineering (control feedback and decision optimization) and statistics (post-design performance analysis) with a common theme: reliability increase seen from the responsive angle of incorporating and engineering multi-le...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pham, Khanh D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03149nam a22005535i 4500
001 978-1-4614-5079-5
003 DE-He213
005 20151116135225.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9781461450795  |9 978-1-4614-5079-5 
024 7 |a 10.1007/978-1-4614-5079-5  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Pham, Khanh D.  |e author. 
245 1 0 |a Linear-Quadratic Controls in Risk-Averse Decision Making  |h [electronic resource] :  |b Performance-Measure Statistics and Control Decision Optimization /  |c by Khanh D. Pham. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
520 |a Linear-Quadratic Controls in Risk-Averse Decision Making   cuts across control engineering (control feedback and decision optimization) and statistics (post-design performance analysis) with a common theme: reliability increase seen from the responsive angle of incorporating and engineering multi-level performance robustness beyond the long-run average performance into control feedback design and decision making and complex dynamic systems from the start. This monograph provides a complete description of statistical optimal control (also known as cost-cumulant control) theory. In control problems and topics, emphasis is primarily placed on major developments attained and explicit connections between mathematical statistics of performance appraisals and decision and control optimization. Chapter summaries shed light on the relevance of developed results, which makes this monograph suitable for graduate-level lectures in applied mathematics and electrical engineering with systems-theoretic concentration, elective study or a reference for interested readers, researchers, and graduate students who are interested in theoretical constructs and design principles for stochastic controlled systems.  . 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Computer mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461450788 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5079-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)