Introduction to Queueing Systems with Telecommunication Applications

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stoch...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lakatos, Laszlo (Συγγραφέας), Szeidl, Laszlo (Συγγραφέας), Telek, Miklos (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03788nam a22005415i 4500
001 978-1-4614-5317-8
003 DE-He213
005 20151204180728.0
007 cr nn 008mamaa
008 121214s2013 xxu| s |||| 0|eng d
020 |a 9781461453178  |9 978-1-4614-5317-8 
024 7 |a 10.1007/978-1-4614-5317-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Lakatos, Laszlo.  |e author. 
245 1 0 |a Introduction to Queueing Systems with Telecommunication Applications  |h [electronic resource] /  |c by Laszlo Lakatos, Laszlo Szeidl, Miklos Telek. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 388 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction to probability theory -- Introduction to stochastic processes -- Markov chains -- Renewal and regenerative processes -- Markov chains with special structures -- Introduction to queueing systems -- Markovian queueing systems -- Non-Markovian queueing systems -- Queueing systems with structured Markov chains -- Queueing networks -- Applied queueing systems -- Functions and transforms -- Exercises -- References.-. 
520 |a The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.  The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with  phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.  An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences. 
650 0 |a Mathematics. 
650 0 |a Computer system failures. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a System Performance and Evaluation. 
650 2 4 |a Communications Engineering, Networks. 
700 1 |a Szeidl, Laszlo.  |e author. 
700 1 |a Telek, Miklos.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461453161 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5317-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)