Introduction to Perturbation Methods

This introductory graduate text is based on a graduate course the author has taught repeatedly over the last twenty or so years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and g...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Holmes, Mark H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Έκδοση:2nd ed. 2013.
Σειρά:Texts in Applied Mathematics, 20
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03590nam a22005055i 4500
001 978-1-4614-5477-9
003 DE-He213
005 20151204162503.0
007 cr nn 008mamaa
008 121205s2013 xxu| s |||| 0|eng d
020 |a 9781461454779  |9 978-1-4614-5477-9 
024 7 |a 10.1007/978-1-4614-5477-9  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Holmes, Mark H.  |e author. 
245 1 0 |a Introduction to Perturbation Methods  |h [electronic resource] /  |c by Mark H. Holmes. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 438 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 20 
505 0 |a Preface -- Preface to Second Edition -- Introduction to Asymptotic Approximations -- Matched Asymptotic Expansions -- Multiple Scales -- The WKB and Related Methods -- The Method of Homogenization- Introduction to Bifurcation and Stability -- References -- Index. 
520 |a This introductory graduate text is based on a graduate course the author has taught repeatedly over the last twenty or so years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover more advanced topics such as systems and partial differential equations. Moreover, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations.  Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.  For this new edition every section has been updated throughout, many only in minor ways, while others have been completely rewritten. New material has also been added. This includes approximations for weakly coupled oscillators, analysis of problems that involve transcendentally small terms, an expanded discussion of Kummer functions, and metastability. Two appendices have been added, one on solving difference equations and another on delay equations. Additional exercises have been included throughout.  Review of first edition: "Those familiar with earlier expositions of singular perturbations for ordinary and partial differential equations will find many traditional gems freshly presented, as well as many new topics. Much of the excitement lies in the examples and the more than 250 exercises, which are guaranteed to provoke and challenge readers and learners with various backgrounds and levels of expertise." (SIAM Review, 1996 )  . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461454762 
830 0 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 20 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5477-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)