Anonymization of Electronic Medical Records to Support Clinical Analysis

Anonymization of Electronic Medical Records to Support Clinical Analysis closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats. To motivate the need for computational methods, the book...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gkoulalas-Divanis, Aris (Συγγραφέας), Loukides, Grigorios (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03466nam a22004935i 4500
001 978-1-4614-5668-1
003 DE-He213
005 20151204144041.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9781461456681  |9 978-1-4614-5668-1 
024 7 |a 10.1007/978-1-4614-5668-1  |2 doi 
040 |d GrThAP 
050 4 |a R858-R859.7 
072 7 |a UBH  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
082 0 4 |a 502.85  |2 23 
100 1 |a Gkoulalas-Divanis, Aris.  |e author. 
245 1 0 |a Anonymization of Electronic Medical Records to Support Clinical Analysis  |h [electronic resource] /  |c by Aris Gkoulalas-Divanis, Grigorios Loukides. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 72 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Overview of patient data anonymization -- Re-identification of clinical data through diagnosis information -- Preventing re-identification while supporting GWAS -- Case study on electronic medical records data -- Conclusions and open research challenges -- Index. 
520 |a Anonymization of Electronic Medical Records to Support Clinical Analysis closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats. To motivate the need for computational methods, the book first explores the main challenges facing the privacy-protection of medical data using the existing policies, practices and regulations. Then, it takes an in-depth look at the popular computational privacy-preserving methods that have been developed for demographic, clinical and genomic data sharing, and closely analyzes the privacy principles behind these methods, as well as the optimization and algorithmic strategies that they employ. Finally, through a series of in-depth case studies that highlight data from the US Census as well as the Vanderbilt University Medical Center, the book outlines a new, innovative class of privacy-preserving methods designed to ensure the integrity of transferred medical data for subsequent analysis, such as discovering or validating associations between clinical and genomic information. Anonymization of Electronic Medical Records to Support Clinical Analysis is intended for professionals as a reference guide for safeguarding the privacy and data integrity of sensitive medical records. Academics and other research scientists will also find the book invaluable. 
650 0 |a Computer science. 
650 0 |a Health informatics. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Health Informatics. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
700 1 |a Loukides, Grigorios.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461456674 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5668-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)