Optimization

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Build...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lange, Kenneth (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Έκδοση:2nd ed. 2013.
Σειρά:Springer Texts in Statistics, 95
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03489nam a22005055i 4500
001 978-1-4614-5838-8
003 DE-He213
005 20151204161644.0
007 cr nn 008mamaa
008 130321s2013 xxu| s |||| 0|eng d
020 |a 9781461458388  |9 978-1-4614-5838-8 
024 7 |a 10.1007/978-1-4614-5838-8  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Lange, Kenneth.  |e author. 
245 1 0 |a Optimization  |h [electronic resource] /  |c by Kenneth Lange. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVII, 529 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 95 
505 0 |a Elementary Optimization -- The Seven C’s of Analysis -- The Gauge Integral -- Differentiation -- Karush-Kuhn-Tucker Theory -- Convexity -- Block Relaxation -- The MM Algorithm -- The EM Algorithm -- Newton’s Method and Scoring -- Conjugate Gradient and Quasi-Newton -- Analysis of Convergence -- Penalty and Barrier Methods -- Convex Calculus -- Feasibility and Duality -- Convex Minimization Algorithms -- The Calculus of Variations -- Appendix: Mathematical Notes -- References -- Index. 
520 |a Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications.   In this second edition, the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth.  Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions. 
650 0 |a Statistics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical optimization. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461458371 
830 0 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 95 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5838-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)