From Kinetic Models to Hydrodynamics Some Novel Results /

From Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation.  The work is a survey of an active research area, which aims to bridge time and l...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Colangeli, Matteo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03671nam a22005535i 4500
001 978-1-4614-6306-1
003 DE-He213
005 20151124021709.0
007 cr nn 008mamaa
008 130326s2013 xxu| s |||| 0|eng d
020 |a 9781461463061  |9 978-1-4614-6306-1 
024 7 |a 10.1007/978-1-4614-6306-1  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Colangeli, Matteo.  |e author. 
245 1 0 |a From Kinetic Models to Hydrodynamics  |h [electronic resource] :  |b Some Novel Results /  |c by Matteo Colangeli. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a X, 96 p. 21 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Introduction -- 2. From the Phase Space to the Boltzmann Equation -- 3. Methods of Reduced Description -- 4. Hydrodynamic Spectrum of Simple Fluids -- 5. Hydrodynamic Fluctuations from the Boltzmann Equation -- 6. 13 Moment Grad System -- 7. Conclusions -- References.     . 
520 |a From Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation.  The work is a survey of an active research area, which aims to bridge time and length scales from the particle-like description inherent in Boltzmann equation theory to a fully established “continuum” approach typical of macroscopic laws of physics.The author sheds light on a new method—using invariant manifolds—which addresses a functional equation for the nonequilibrium single-particle distribution function.  This method allows one to find exact and thermodynamically consistent expressions for: hydrodynamic modes; transport coefficient expressions for hydrodynamic modes; and transport coefficients of a fluid beyond the traditional hydrodynamic limit.  The invariant manifold method paves the way to establish a needed bridge between Boltzmann equation theory and a particle-based theory of hydrodynamics.  Finally, the author explores the ambitious and longstanding task of obtaining hydrodynamic constitutive equations from their kinetic counterparts. The work is intended for specialists in kinetic theory—or more generally statistical mechanics—and will provide a bridge between a physical and mathematical approach to solve real-world problems. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Mathematical models. 
650 0 |a Physics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461463054 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6306-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)