The Mathematics of Frobenius in Context A Journey Through 18th to 20th Century Mathematics /

Frobenius is best known as creator of the theory of group characters and representations, but his name is attached to a multitude of theorems and concepts from a broad spectrum of mathematical disciplines. In this book his mathematics is presented “in context” in two senses. The first provides the r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hawkins, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Sources and Studies in the History of Mathematics and Physical Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04439nam a22004695i 4500
001 978-1-4614-6333-7
003 DE-He213
005 20151218111759.0
007 cr nn 008mamaa
008 130723s2013 xxu| s |||| 0|eng d
020 |a 9781461463337  |9 978-1-4614-6333-7 
024 7 |a 10.1007/978-1-4614-6333-7  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
100 1 |a Hawkins, Thomas.  |e author. 
245 1 4 |a The Mathematics of Frobenius in Context  |h [electronic resource] :  |b A Journey Through 18th to 20th Century Mathematics /  |c by Thomas Hawkins. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 699 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8810 
505 0 |a 1. A Berlin Education -- 2. Professor at the Zurich Polytechnic -- 3. Berlin Professor -- 4. The Paradigm -- 5. Further Development of the Paradigm -- 6. The Problem of Pfaff -- 7. The Cayley-Hermite Problem and Matrix Algebra -- 8. Arithmetical Investigations: Linear Algebra -- 9. Arithmetical Investigations: Groups -- 10. Abelian Functions -- 11. Frobenius' Generalized Theory of Theta Functions -- 12. The Group Determinant Problem -- 13. Group Characters and Representations -- 14. Alternate Routes to Representation Theory -- 15. Characters and Representations after 1897 -- 16. Loose Ends -- 17. Nonnegative Matrices -- 18. The Mathematics of Frobenius in Retrospect -- References -- Index. 
520 |a Frobenius is best known as creator of the theory of group characters and representations, but his name is attached to a multitude of theorems and concepts from a broad spectrum of mathematical disciplines. In this book his mathematics is presented “in context” in two senses. The first provides the reader with the historical background necessary to understand why Frobenius undertook to solve a particular problem and to appreciate the magnitude of his achievement. Part of the context involves Frobenius’ training in the Berlin school of mathematics presided over by Weierstrass, Kronecker, and Kummer, from whom he learned disciplinary ideals as well as theorems. Frobenius’ mathematics is also presented “in context” in that the author traces the ways in which his work was subsequently applied, developed, and ultimately incorporated into present-day mathematics. As a consequence of the contextual approach, the reader will encounter a broad swath of diverse and important strands of 18th–20th century mathematics, ranging from the work of Lagrange and Laplace on stability of linear systems of differential equations to the theory of complex abelian varieties. The book is divided into three parts. Part I provides an overview of Frobenius’ entire mathematical career and thus serves as an introduction to the main body of the book. Here, within the framework of his educational and professional career, his contributions to mathematics and the attendant backgrounds are briefly sketched and their subsequent impact upon the development of mathematics indicated. Part II presents the development of core aspects of linear algebra up to and including the work of Weierstrass and Kronecker. The chapters of Part III deal in depth with Frobenius’ major works and can be read independently of one another. Thomas Hawkins was awarded the MAA Chauvenet Prize for expository writing and was the first recipient of the AMS Whiteman Prize for historical exposition. His last book was Emergence of the Theory of Lie Groups (Springer, 2000). 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461463320 
830 0 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8810 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6333-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)