Robust Emotion Recognition using Spectral and Prosodic Features
In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner. The authors also delve into the complement...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Σειρά: | SpringerBriefs in Electrical and Computer Engineering,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Robust Emotion Recognition using Pitch Synchronous and Sub-syllabic Spectral Features
- Robust Emotion Recognition using Word and Syllable Level Prosodic Features
- Robust Emotion Recognition using Combination of Excitation Source, Spectral and Prosodic Features
- Robust Emotion Recognition using Speaking Rate Features
- Emotion Recognition on Real Life Emotions
- Summary and Conclusions
- MFCC Features
- Gaussian Mixture Model (GMM).