Design of Experiments in Nonlinear Models Asymptotic Normality, Optimality Criteria and Small-Sample Properties /

Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that wi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pronzato, Luc (Συγγραφέας), Pázman, Andrej (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Statistics, 212
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Asymptotic designs and uniform convergence. Asymptotic properties of the LS estimator
  • Asymptotic properties of M, ML and maximum a posteriori estimators
  • Local optimality criteria based on asymptotic normality
  • Criteria based on the small-sample precision of the LS estimator
  • Identifiability, estimability and extended optimality criteria
  • Nonlocal optimum design
  • Algorithms—a survey
  • Subdifferentials and subgradients
  • Computation of derivatives through sensitivity functions
  • Proofs
  • Symbols and notation
  • List of labeled assumptions
  • References.