Sparse Representations and Compressive Sensing for Imaging and Vision

Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal.  These measurements are usually much smaller than the number of samples that define the signal.  From these small numbers of measuremen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Patel, Vishal M. (Συγγραφέας), Chellappa, Rama (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02636nam a22005055i 4500
001 978-1-4614-6381-8
003 DE-He213
005 20151204153727.0
007 cr nn 008mamaa
008 130220s2013 xxu| s |||| 0|eng d
020 |a 9781461463818  |9 978-1-4614-6381-8 
024 7 |a 10.1007/978-1-4614-6381-8  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Patel, Vishal M.  |e author. 
245 1 0 |a Sparse Representations and Compressive Sensing for Imaging and Vision  |h [electronic resource] /  |c by Vishal M. Patel, Rama Chellappa. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a X, 102 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Compressive Sensing -- Compressive Acquisition -- Compressive Sensing for Vision -- Sparse Representation-based Object Recognition -- Dictionary Learning -- Concluding Remarks. 
520 |a Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal.  These measurements are usually much smaller than the number of samples that define the signal.  From these small numbers of measurements, the signal is then reconstructed by non-linear procedure.  Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways.  In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Chellappa, Rama.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461463801 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6381-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)