Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both the arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on  Arithmetic and G...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Laza, Radu (Επιμελητής έκδοσης), Schütt, Matthias (Επιμελητής έκδοσης), Yui, Noriko (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Fields Institute Communications, 67
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05036nam a22005295i 4500
001 978-1-4614-6403-7
003 DE-He213
005 20151103131012.0
007 cr nn 008mamaa
008 130611s2013 xxu| s |||| 0|eng d
020 |a 9781461464037  |9 978-1-4614-6403-7 
024 7 |a 10.1007/978-1-4614-6403-7  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds  |h [electronic resource] /  |c edited by Radu Laza, Matthias Schütt, Noriko Yui. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XXVI, 602 p. 41 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 1069-5265 ;  |v 67 
505 0 |a .-Preface.-Introduction -- List of Participants -- K3 and Enriques Surfaces (S. Kondo) -- Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties (J.D. Lewis) -- Two Lectures on the Arithmetic of K3 Surfaces (M. Schütt) -- Modularity of Calabi–Yau Varieties (N. Yui) -- Explicit Algebraic Coverings of a Pointed Torus (A. Anema, J. Top) -- Elliptic Fibrations on the Modular Surface Associated to Γ1(8) -- Universal Kummer Families over Shimura Curves (A. Besser, R. Livné) -- Numerical Trivial Automorphisms of Enriques Surfaces in Arbitrary Characteristic (I.V. Dolgachev) -- Picard-Fuchs Equations of Special One-Parameter Families of Invertible Polynomials (S. Gährs) -- A Structure Theorem for Fibrations on Delsarte Surfaces (B. Heijne, R. Kloosterman) -- Fourier–Mukai Partners and Polarised K3 Surfaces (K. Hulek, D. Ploog) -- On a Family of K3 Surfaces with S4 Symmetry (D. Karp, J. Lewish, D. Moore, D. Skjorshammer, U. Whitcher) -- K1ind of Elliptically Fibered K3 Surfaces (M. Kerr) -- A Note About Special Cycles on Moduli Spaces of K3 Surfaces (S. Kudla) -- Enriques Surfaces of Hutchinson–Göpel Type and Mathieu Automorphisms (S. Mukai, H. Ohashi) -- Quartic K3 Surfaces and Cremona Transformations (K. Oguiso) -- Invariants of Regular Models of the Product of Two Elliptical Curves at a Place of Multiplicative Reduction (C. Schoen) -- Dynamics of Special Points on Intermediate Jacobians (X. Chen, J.D. Lewis) -- Calabi–Yau Conifold Expansions (S. Cynk, D. van Straten) -- Quadratic Twists of Rigid Calabi–Yau Threefolds over Q (F.Q. Gouvêa, I. Kimming, N. Yui) -- Counting Sheaves on Calabi–Yau and Abelian Threefolds (M.G. Gulbrandsen) -- The Serge Cubic and Borcherds Products (S. Kondo) -- Quadi-Modular Forms Attached to Hodge Structures (H. Movasati) -- The Zero Locus of the Infinitesimal Invariable (G. Pearlstein, Ch. Schnell). 
520 |a In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both the arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on  Arithmetic and Geometry of  K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16–25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the large variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with three days of introductory lectures. A selection of four of these lectures is included in this volume. These lectures can be used as a starting point for graduate students and other junior researchers, or as a guide to the subject. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
650 0 |a Number theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Physics. 
700 1 |a Laza, Radu.  |e editor. 
700 1 |a Schütt, Matthias.  |e editor. 
700 1 |a Yui, Noriko.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461464020 
830 0 |a Fields Institute Communications,  |x 1069-5265 ;  |v 67 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6403-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)