Bayesian Networks in R with Applications in Systems Biology /

Bayesian Networks in R with Applications in Systems Biology introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is gradually increased across the chapters wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nagarajan, Radhakrishnan (Συγγραφέας), Scutari, Marco (Συγγραφέας), Lèbre, Sophie (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Use R! ; 48
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02880nam a22004815i 4500
001 978-1-4614-6446-4
003 DE-He213
005 20151204190637.0
007 cr nn 008mamaa
008 130427s2013 xxu| s |||| 0|eng d
020 |a 9781461464464  |9 978-1-4614-6446-4 
024 7 |a 10.1007/978-1-4614-6446-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Nagarajan, Radhakrishnan.  |e author. 
245 1 0 |a Bayesian Networks in R  |h [electronic resource] :  |b with Applications in Systems Biology /  |c by Radhakrishnan Nagarajan, Marco Scutari, Sophie Lèbre. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 157 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R! ;  |v 48 
505 0 |a Introduction -- Bayesian Networks in the Absence of Temporal Information -- Bayesian Networds in the Presence of Temporal Information -- Bayesian Network Inference Algorithms -- Parallel Computing for Bayesian Networks -- Solutions -- Index -- References. 
520 |a Bayesian Networks in R with Applications in Systems Biology introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is gradually increased across the chapters with exercises and solutions for enhanced understanding and hands-on experimentation of key concepts. Applications focus on systems biology with emphasis on modeling pathways and signaling mechanisms from high throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regards as exemplified by their ability to discover new associations while validating known ones. It is also expected that the prevalence of publicly available high-throughput biological and healthcare data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book. 
650 0 |a Statistics. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
700 1 |a Scutari, Marco.  |e author. 
700 1 |a Lèbre, Sophie.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461464457 
830 0 |a Use R! ;  |v 48 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6446-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)