Applications of q-Calculus in Operator Theory

The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalizat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aral, Ali (Συγγραφέας), Gupta, Vijay (Συγγραφέας), Agarwal, Ravi P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02982nam a22004815i 4500
001 978-1-4614-6946-9
003 DE-He213
005 20151125211611.0
007 cr nn 008mamaa
008 130509s2013 xxu| s |||| 0|eng d
020 |a 9781461469469  |9 978-1-4614-6946-9 
024 7 |a 10.1007/978-1-4614-6946-9  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Aral, Ali.  |e author. 
245 1 0 |a Applications of q-Calculus in Operator Theory  |h [electronic resource] /  |c by Ali Aral, Vijay Gupta, Ravi P Agarwal. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction of q-calculus -- q-Discrete operators and their results -- q-Integral operators -- q-Bernstein type integral operators -- q-Summation-integral operators -- Statistical convergence of q-operators -- q-Complex operators. 
520 |a The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics.  This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Functional Analysis. 
700 1 |a Gupta, Vijay.  |e author. 
700 1 |a Agarwal, Ravi P.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461469452 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6946-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)